Computers & Security 142 (2024) 103859

journal homepage: www.elsevier.com/locate/cose

Contents lists available at ScienceDirect

Computers & Security

Computers
& S i

Check for

Two-stage multi-datasource machine learning for attack technique and o

lifecycle detection

Ying-Dar Lin 2, Shin-Yi Yang?, Didik Sudyana ®", Fietyata Yudha?, Yuan-Cheng Lai®,

Ren-Hung Hwang ¢

a Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
b Department of Information Management, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
¢ College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan, 711, Taiwan

ARTICLE INFO ABSTRACT

Keywords:

Ml-based IDS

Attack lifecycle detection
Multi-datasource IDS
Two-stage lifecycle detection

Intrusion detection systems (IDS) have increasingly adopted machine learning (ML) techniques to enhance
their ability to detect a wide range of attack variants. However, the traditional focus in current research
primarily revolves around identifying specific attack types or techniques using a single data source. However,
this approach lacks a holistic perspective on attacks, which can result in missed detections. To improve the
effectiveness of responding to detected attacks, it is essential to identify them based on their lifecycles and
incorporate information from multiple data sources. In this study, we present three distinct approaches for
detecting attack lifecycles, each leveraging different ML methodologies: a single-stage ML model, a two-stage
ML+ML approach, and ML with sequence matching (ML+SM). Simultaneously, we explore the benefits of
utilizing multiple data sources, including network traffic, system logs, and host statistics, to enhance technique
detection capabilities. Our evaluation of these methods reveals that on lifecycle detection, the two-stage
ML+ML approach outperforms the others, achieving an impressive F1 score of 0.994. In contrast, the single-
stage and ML+SM methods yield F1 scores of 0.887 and 0.189, respectively. Furthermore, the integration
of multiple data sources proves highly advantageous, with the combination of all three sources yielding the

highest F1 score of 0.922 on technique detection.

1. Introduction

As cyber threats evolve, robust cybersecurity measures are essen-
tial (Hoque et al.,, 2014). Intrusion Detection Systems (IDS) are a
key protective element. Traditionally, IDS relied on signature- and
anomaly-based methods, with limitations in detecting unknown attacks
and high false positives. Integrating machine learning into IDS is crucial
for effectively addressing a broader spectrum of attack variations and
behaviors (Hamid et al., 2016).

While machine learning-based IDS (ML-IDS) has demonstrated effec-
tiveness in identifying attack variants, several challenges persist. Specif-
ically, the effectiveness of an ML model often depends on the quality
and diversity of its training dataset. Currently, there is a limited number
of publicly available datasets for intrusion detection, with most well-
known datasets primarily utilizing network traffic data as their main
sources (Yang et al., 2022). For instance, CIC-IDS-2017 (Sharafaldin
et al., 2018) is focused on network traffic data. On the other hand,

* Corresponding author.

datasets like DARPA Transparent Computing (TC) (Operationally Trans-
parent Cyber Dataset, 2019) solely provide system log data. This limi-
tation has directed many research efforts toward concentrating exclu-
sively on detecting attacks from these specific data sources (Zavrak
and iskefiyeli, 2020; Meng et al., 2019; Ham et al., 2014; Toupas
et al., 2019; Meng et al., 2018; Sun et al., 2020; Bagui et al., 2022).
In this context, a data source refers to a certain type of information
used to detect malicious activities in a system. Solely relying on one
data source, however, might be inadequate, especially when handling
complex data that encompasses both external and internal behaviors.
Recognizing this challenge, a study has explored the integration of
various data sources, such as network traffic, system logs, and host
statistics, to enhance detection comprehensiveness (Lin et al., 2022).
Another significant challenge arises when the focus is solely on
detecting the presence of an attack (Zavrak and Iskefiyeli, 2020; Meng
et al., 2019; Ham et al., 2014; Sun et al., 2020; Meng et al., 2018;
Toupas et al., 2019) or identifying specific attack techniques (Lin et al.,

E-mail addresses: ydlin@cs.nycu.edu.tw (Y.-D. Lin), shinyee.cs10@nycu.edu.tw (S.-Y. Yang), dsudyana@cs.nycu.edu.tw (D. Sudyana),
fyudha@cs.nycu.edu.tw (F. Yudha), laiyc@cs.ntust.edu.tw (Y.-C. Lai), rhhwang@nycu.edu.tw (R.-H. Hwang).

https://doi.org/10.1016/j.cose.2024.103859

Received 12 February 2024; Received in revised form 29 March 2024; Accepted 17 April 2024

Available online 26 April 2024
0167-4048/© 2024 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
mailto:ydlin@cs.nycu.edu.tw
mailto:shinyee.cs10@nycu.edu.tw
mailto:dsudyana@cs.nycu.edu.tw
mailto:fyudha@cs.nycu.edu.tw
mailto:laiyc@cs.ntust.edu.tw
mailto:rhhwang@nycu.edu.tw
https://doi.org/10.1016/j.cose.2024.103859
https://doi.org/10.1016/j.cose.2024.103859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103859&domain=pdf

Y.-D. Lin et al

Computers & Security 142 (2024) 103859

Recconaisance | | Resource | [initial Access Execution Persistence Privilege Defense Evasion | | Credential Discovery Lateral Collection | [Commandana | [Extiltration Impact
Development Escalation Access. Movement Control
o (oom 1l (e) = o) i || 8
Active scanning Brte Bl T Debugger Ingress Tool Direct Network g
1P block ing . Service Evasion Scanning Transfer Flood 2
Application
g
[T1203 .l T1543] Ti105 Ti486 H
Exploitation for (-3 ("SO,M’ {piCreate or Ingress Tool Destruction) E
lcuem Execution| ok momer® | | [svstem chessJ Transter for Impact H
s
Fy
o W= =R e BT
5 Compromise Exploit for H
cplotaion for (-3 COMEIOee Lyl Dbl Ingress Tool Resource 88
Client Execution ot Software vilege Transfer Hijacking 55
Binary Escalation a8
T1190
T1595.001
Active scanning R
1P block Aoplication
g
[z, JH comon I 5 |
| Sxplottation ot (71 Giient Software [TT] ~ Prviege ata Destructon | [~ =
Binary Escalation 3
Ti068 o
T1203 Ti108 T1499 g
Exploitation for ke L1l T8 Ingress Tool Point Denial g5
Client Execution riviege oM Aocoun Transfer of Senvice g
Escalation S

Fig. 1. Mapping attacks to sequences of techniques on CREMEv2 (Yudha, 2023).

2022; Bagui et al., 2022). While these methods are valuable, they
may not provide a complete understanding of the attack landscape.
ML-IDS systems that concentrate solely on these aspects might miss
crucial details such as the attack’s broader objectives, the assets it
targets, and its duration. In many cases, sophisticated attacks, such
as Advanced Persistent Threats (APTs), involve various infiltration
techniques, long-term, and discreet persistence within a system envi-
ronment (Alshamrani et al., 2019; Yue et al., 2024). By solely focusing
on attack detection or technique identification, the broader context,
including the attack’s goals, target assets, and duration, may remain
elusive.

Therefore, there is a need for further research to develop more
comprehensive and robust ML-IDS that can detect attacks from multiple
data sources throughout the entire attack process. A typical attack is
composed of a sequence of different attack techniques, called attack
lifecycle (Kaloudi and Li, 2020). Detecting lifecycles from the sequences
of techniques provides valuable information for security operations
centers (SOCs). This information can be leveraged to determine effec-
tive countermeasure procedures aimed at preventing the completion of
these lifecycles, thus minimizing potential damage.

Furthermore, the insights gained from lifecycle detection can also
be instrumental in the development of new IDS models. By under-
standing these lifecycles, IDS can be upgraded to detect them at the
earliest stages, potentially identifying threats before the entire attack
process unfolds. This proactive approach is a significant advancement
in cybersecurity and contributes to more robust and timely threat
mitigation.

The concepts of attack lifecycle and technique are defined by MITRE
ATT&CK (Strom et al., 2018) framework, which is useful for developing
effective defense strategies. This framework has defined attack tactics,
which refer to the specific objectives of each stage of an attack, and the
attack techniques that are used to accomplish these attack tactics.

To solve the problems mentioned above, in this study, we detect
attack techniques and attack lifecycles by using multiple data sources,
including network traffic, system logs, and host statistics, simultane-
ously. Network traffic contains some information in the network flow,
such as the number of packets, ports, protocol, and duration. System
logs are generated by the operating system, recording the activities
related to the operating system and the software running on a com-
puter or network. Host statistics include the status of each process,
such as CPU usage, memory usage, and page fault rate. Combining
these sources yields a comprehensive perspective on network and host
activities, facilitating holistic threat assessment.

Moreover, diverse attack techniques manifest in these data sources.
For example, network-based attacks often leave traces in traffic data,
while malware infections show up in system logs (Beaman et al., 2021),
and cryptocurrency-mining is better detected through network and

host statistics (Gomes et al., 2020). Integrating these multiple sources
enables effective detection of a wide range of attack techniques. In con-
trast to existing works, this research delves deeper into the synergistic
effects of these data sources. We explore how their integrated analysis
can significantly improve the detection of the attack lifecycles through
analyzing the sequences of techniques.

In this work, we propose three lifecycle detection approaches: ML,
ML+ML, and ML+SM. The single-stage ML approach utilizes multiple
data sources to predict lifecycles through a single ML model. The
ML+ML approach employs ML models to detect attack techniques from
various data sources and classify associated lifecycles from technique
sequences. The ML+SM approach combines ML models for technique
detection and the sequence matching method (Levenshtein et al., 1966)
for lifecycle classification. These approaches enhance our understand-
ing of cyber attack characteristics.

This work makes three key contributions to the field: (1) it addresses
the challenge of detecting sophisticated cyber attacks by identifying
attack lifecycles from technique sequences, a novel approach in the do-
main, (2) we introduce a novel two-stage machine learning method uti-
lizing multi-datasource for detecting attack techniques and classifying
attack lifecycles, (3) we assess the effectiveness of the three proposed
approaches (ML, ML+ML, ML+SM) in identifying attack lifecycles.

Furthermore, to enhance our knowledge, we also investigate the fol-
lowing issues: (1) single- vs. two-stage ML, to compare the performance
of the three approaches in detecting lifecycles, (2) the performance
evaluation of learning models on lifecycle detection, (3) we com-
prehensively assess the effectiveness of three distinct methodologies:
ML, ML+ML, and ML+SM, in identifying attack lifecycles, offering
groundbreaking insights into the detection and classification of cyber
threats.

The rest of this paper is organized as follows: in Section 2, we
provide the background and related works on ML-based intrusion de-
tection. Section 3 and 4 present the problem statement and solution
approaches, respectively. In Section 5, we describe the detailed im-
plementation. The experiment results are shown in Section 6. Finally,
Section 7 concludes the works and discusses future work.

2. Background and related works

In this section, we provide an overview of the background, including
the MITRE ATT&CK and the attack scenarios used in this study. At the
end of the section, we present a comparison with other works that differ
from our approach

Y.-D. Lin et al

Computers & Security 142 (2024) 103859

Table 1
ML-based intrusion detection approaches.
Detection target Paper Data source Dataset Approach
Network traffic System logs Host statistics
Zavrak and iskcﬁycli (2020) Binary - - CICIDS2017, NSLKDD AE, VAE
Toupas et al. (2019) Multiclass - - CICIDS2017 SMOTE, ENN, DNN
Meng et al. (2019) - Binary - HDFS, BGL LSTM
Meng et al. (2018) - Multiclass - self-collected PU learning, SVM
Sun et al. (2020) - Multiclass - Thunderbird, BGL SMOTE, Bi-LSTM
Attack level ;i
Du et al. (2017) - Binary - HDFS, OpenStack LSTM
Ham et al. (2014) - - Binary self-collected SVM
Liu et al. (2022) Multicass Multicass - SCVIC-CIDS-2021 XGBoost
Lin et al. (2022) Binary Binary Binary CREME XGBoost
Hwang et al. (2023) Binary Binary Binary CREME DL
Technique level Bagui et al. (2022) Binary - - UWF-ZeekData22 Multiple algorithms
Technique and lifecycle levels Ours Multiclass Multiclass Multiclass CREMEv2 (Yudha, 2023) XGBoost, ML

2.1. MITRE ATT&CK: Tactics, techniques and lifecycles

The MITRE institution has developed a framework called ATT&CK
(Strom et al., 2018), which is used for understanding the techniques,
tactics, and procedures (TTPs) employed by attackers during cyber-
attacks. ATT&CK matrix presents attack stages and corresponding tech-
niques used in each stage.

The lifecycle concept provides a comprehensive understanding of
the technique sequences used in an attack. For example, advanced per-
sistent threat (APT) attacks may have a long lifecycle that includes mul-
tiple tactics and techniques (Singh et al., 2019). By understanding the
lifecycle of an attack, defenders can develop effective countermeasures
to detect and prevent attacks (Wang et al., 2024).

2.2. Attack scenarios

In this study, we used the CREMEv2 dataset (Yudha, 2023), fea-
turing five common real-world attacks: Mirai botnet, ransomware,
resource hijacking, disk wipe, and endpoint DoS. Fig. 1 maps out the
tactics and techniques for each attack in the dataset. Rows represent the
reproduced lifecycles, columns indicate the tactics, and blocks display
technique details, summing up to 17 attack techniques. Each attack’s
background and execution methods are further detailed.

Botnet attack can be used for further attacks, such as DDoS. An
example is the Mirai botnet. In the context of the CREMEv2 dataset, the
Mirai botnet exhibits diverse lifecycles, a reflection of its multifaceted
nature. The dataset includes a more general representation of Mirai’s
lifecycle, starting from the creation of the Mirai botnet. The reason
for this diversity in lifecycles is attributed to the complexity of Mirai’s
attack strategies (Affinito et al., 2023). It utilizes various techniques
based on the MITRE ATT&CK framework, which encompasses a wide
array of tactics and procedures for compromising and controlling target
devices.

Resource hijacking involves seven techniques where attackers ex-
ploit a victim’s system for personal gains. Falling under the ‘Impact’
tactic, a notable subtype is cryptojacking. Victims may experience
heightened energy use, system slowdowns, and significant costs due to
these attacks.

Disk wipe attack involves six techniques to try to delete vital files
or directories on targets. In some cases, it is coupled with ransomware
attacks, aiming to encrypt important files and demand payment in
exchange for the decryption key.

Endpoint DoS attack, encompassing seven techniques and targeting
specific devices, aims to exhaust their resources. Unlike broader net-
work attacks, this focuses on the device itself. Overwhelming traffic or
requests can make the device crash, leading to potential data loss or
service disruptions.

2.3. Related works

The related works can be categorized into three groups based on
their detection targets, as summarized in Table 1. The first group,
‘attack level’, aims to detect either the presence of an attack or its type.
The second group, ‘technique level’, seeks to identify the techniques
employed in an attack, and lastly, ‘technique and lifecycle levels’, seek
to identify the lifecycle based on the sequence of techniques.

Currently, most of the research focuses on attack-level detection.
Researchers such as Zavrak and iskefiyeli (2020) and Toupas et al.
(2019) concentrated on identifying attacks in public network traffic
datasets, harnessing deep learning (DL) models. In contrast, Meng et al.
(2019, 2018), Sun et al. (2020), and Du et al. (2017) handled attacks
in system log datasets. They processed text data and employed LSTM-
based DL models. Meng et al. (2018) embraced a semi-supervised
learning approach to distinguish benign from malicious data, using
SVM models for classification. Ham et al. (2014) applied SVM models
to classify statistical data gathered from mobile devices. Toupas et al.
(2019) and Sun et al. (2020) acknowledged the challenge of data
imbalance in multi-class classification tasks and employed resampling
methods to address this issue. Liu et al. (2022) created a new dataset
with network traffic and system logs data using the metadata from
the well-known public dataset (CIC-IDS-2018) and used XGBoost to
test the proposed dataset. However, this study only focuses on how to
evaluate the proposed dataset. Notably, Lin et al. (2022) leveraged the
XGBoost model for attack detection and explored the use of multiple
data sources to enhance performance. However, these studies primar-
ily concentrated on proposing ML models for binary and multi-class
classification of attacks and paid less attention to the underlying attack
techniques. Even when the dataset in Lin et al. (2022) contained both
tactic and attack labels, the authors primarily focused on binary classi-
fication using the attack label for detection. Identifying the techniques
employed by attackers provides valuable insights into their behaviors,
enabling the development of more effective countermeasure strategies.

Moreover, a related study by Bagui et al. (2022) involved technique-
level detection. They constructed a network traffic dataset and catego-
rized it based on reconnaissance and discovery attack tactics, subse-
quently employing various ML models to assess dataset quality. While
their work focused on attack techniques, it did not encompass the
concept of attack lifecycles. By detecting the complete attack lifecy-
cle, network administrators gain the capability to comprehensively
track an attack sequence, thereby bolstering the efficacy of ML-IDS in
identifying and responding to intricate attacks.

Among the mentioned studies, Lin et al. (2022) is closely related
to our work. While they used a similar dataset and demonstrated the
effectiveness of multiple data sources, the objectives and approaches
differ. They conducted binary classification to detect attacks based
on predefined tactics, whereas we performed multiclass classification
to detect lifecycles based on attack technique sequences. Their work
primarily focused on generating multiple data sources through attack

Y.-D. Lin et al

Computers & Security 142 (2024) 103859

Table 2
Notations.
Dataset
Dataset D D=DR|JDP
Training Dataset ny D,’;, w=0,1,2, 0: traffic flow, 1: system log, 2: host statistics
DE = {(x).yl.yF)li € [1, RN1}; RN : size of training traffic flow dataset
DR = {(xj"”‘,le,yJL)|j € [1,RL]}; RL : size of training system log dataset
Df = {(xf,y,y)lk € [1,RS1}; RS : size of training host statistics dataset
Testing Dataset D DP w=0,1,2
Dy ={(x),y],yP)li € [1,PN]}; PN : size of testing traffic flow dataset
D = [(Xfug,yf,yf)lj €[1,PL]}; PL : size of testing system log dataset
DY ={(xf,y.,yDlk €[1,PS]}; PS : size of testing host statistics dataset
Technique Sequence Dataset D" D" = DRT | DPT
DR = {(lys ¥} v3 -1, ¥yl € [1, RT1}; RT : size of training technique sequence dataset
DPT = {(yf y]y; 1.yl € [1, PT1}; PT : size of testing technique sequence dataset
Data Input x x: x,"’,le"g,xf
xN € RVT, xI% € RV, x§ € RNS
NT,NL,NS: size of traffic flow, system log, host statistics features
Technique Label ¥y y' = (y’T,le,yZ|y’T,yIT,yZ € [1,|T|1},|T|: Number of predefined techniques
Lifecycle Label yE b= {yi’-,yf,ylﬂyi’-,yf,y"; € [1,|L]]},|L|: Number of predefined lifecycles
Machine Learning
Technique Classifier M7 MIw=0,12
Optimal Technique Classifier M+ M with highest F1 score
Lifecycle Classifier Mt M*" is ML model for lifecycle detection
Optimal Lifecycle Classifier M M" with highest F1 score
Ensemble Team ME ME|ME € M where M =J,, M]
Bset Ensemble Team ME* MP* with highest F1 score
ML Model M, M, = ML,(DR)
ML Algorithm ML, 0<n<|ML|,|ML|: Number of ML algorithms
Cyber Attack
Predefined Lifecycles L L={L,},1<m<]|L|, where L, denotes the m-th lifecycle.

replays and assessing dataset quality. In contrast, our research centers
on identifying attack technique sequences and leveraging them for
lifecycle detection.

3. Problem statements

This section covers our discussion of the problem statement in two
subsections: the notation table and the problem description. We start
by explaining the notations. Next, we describe the main problem of the
work.

3.1. Notations

Table 2 presents the notations used in this work, classified into
three categories: dataset (network traffic, system log, host statistics),
machine learning (algorithms, models, ensemble teams), and cyber
attack (techniques, lifecycles). The details of each category are listed
as follows:

» Dataset: Datasets comprise data inputs x as well as their cor-
responding technique labels y” and lifecycle labels y’. These
datasets are further divided into two groups: training datasets
DR and testing datasets DP, each containing three types of data

sources. In this context, w represents the data sources: 0 denotes
network traffic, 1 stands for system logs, and 2 indicates host
statistics. Furthermore, the technique sequence dataset DT is
composed of sequences of yI with corresponding label y.
Machine Learning: To have the optimal classifiers, the best
models MT* and ML* should be obtained for different tasks.
Ensemble teams are also included in this category, and they are
classified into two types: ensemble teams for models from each
data source M ¥ and the best ensemble teams M £*.

Cyber Attack: In the final section on cyber attacks, we use a total
of five attack lifecycles, | L|, and seventeen attack techniques, |T'|.

3.2. Problem statements

In today’s complex cybersecurity landscape, enterprises face contin-
uous and multifaceted threats. Attacks on these enterprises are rarely
straightforward; they typically initiate at the web interface, progress
through internal systems, and ultimately target sensitive databases.
This multi-stage attack employs various techniques across diverse data
sources, encompassing network traffic, system logs, and host statistics.

To address these complex real-world challenges, we present a com-
prehensive threat model. Fig. 2 visually represents this model, under-
lining its significance as a fundamental framework for comprehending

Y.-D. Lin et al

Attacker Capabilities Defense

ML-based IDS
Explolli / }\
J

Attacker

Detect Lifecycle

Problem 2: Lifecycle
Detection

Internal Systems Lifecycle Classifier

\

Target

Sensitive Databases

\ Data Sources
| Network Traffic | | System Logs | | Host Statistics | Detect Techniques
| ML Model 1 || ML Model 2 | | ML Model 3 |

Ensemble Method

Problem 1: Technique Detection

Fig. 2. The threat model illustrating the attacks and the challenges of technique and
lifecycle detection in multi-datasource.

and countering multifaceted threats. The threat model addresses two
key challenges: the efficient detection of attack techniques distributed
across diverse data sources, and the intricate task of assembling these
techniques to gain insight into complete attack lifecycles.

Technique detection from multi-datasource

In the first problem, we detect attack techniques from multiple data
sources, using an ensemble method to merge the results from each.

Given a training dataset from multi-datasource DR, composed of x
and its corresponding y”, and machine learning algorithms M L,, as
well as a testing dataset DP, we need to determine the best ensemble
team M £*. This ensemble should achieve the highest F1 score when
evaluated using the testing dataset D”. The statement for this problem
is formally defined as follows:

Input: Training dataset DR which is a set of x with y”, machine
learning algorithms M L,, testing dataset D®.

Output: Best ensemble team M £*,

Objective: Maximize F1 score on ensemble team M tested using
testing data D?.

Lifecycle detection from technique sequences

In the second problem, we classify the attack lifecycle using a
dataset composed of technique sequences. The objective is to find the
best classifier for this task.

Given training dataset DRT, which contain sequences of y” with
corresponding label y’, machine learning algorithms M L, and testing
dataset DT, we need to determine the best lifecycle classifier ML*.
This classifier should achieve the highest F1 score when evaluated using
the testing dataset DP”. The problem statement for this problem is
formally defined as follows:

Input: Training dataset DT which contain sequences of y” with
corresponding label yL, machine learning algorithms ML,, testing
dataset DT

Output: Best lifecycle classifier ML*

Objective: Maximize F1 score on lifecycle classifier M tested using
testing data DPT

Computers & Security 142 (2024) 103859

Lifecycle

[Data sourceus“LP[ML]—VTechnique Lifecycle
d
Technique Lifecycle

Fig. 3. Three lifecycle detection approaches.

Legend

- =---| ML onlifecycle

processmg

Training Phase
Process

Training

i‘))

——»

»’“ Process to Process

“
System logs 1y -
Host statistics ,{ s]Iszic)lrz:

Network Traffic P! 8 c '

Testing Phase b i o it i i

ML

w

Za

Data to/from Process

Ensemble | /Detection
Model Results

Fig. 4. ML on lifecycle.

4. Solution approaches

This section begins with an overview of the solutions including three
approaches to detect the attack lifecycles using multiple data sources.
Then, we look at the details of the components in these three ap-
proaches: trained ML models from each data source, ensemble method,
trained lifecycle detection model, and sequence matching method.

4.1. Solution overview

Fig. 3 illustrates three lifecycle detection methods. The first (single-
stage ML) directly classifies data into target lifecycles, similar to iden-
tifying attack types but without analyzing technique sequences. The
second (two-stage ML+ML) employs ML models twice: first to identify
attack techniques, then to classify them into lifecycles after converting
them into technique sequences. The third (two-stage ML+SM) detects
techniques using ML, forms sequences, and applies sequence matching
for detection. It is important to note that while we utilize various ML
and DL models for technique and lifecycle detection, we still refer to
our approach as ‘ML’ since DL is a subset of ML.

Fig. 4 presents the traditional approach for lifecycle detection
through multiple data sources. The process begins with dividing each
data source into training and testing datasets, pre-processing them,
and training three ML models using the training datasets. The testing
datasets are then used to detect lifecycles. In the end, the ensemble
model combines the results to output the final outcome. The details
of the training process and the ensemble process are described in
Sections 4.2 and 4.3, respectively.

Fig. 5 outlines the ML+ML approach for lifecycle detection in two
stages. Initially, techniques are detected using multiple data sources.
After splitting and pre-processing the data, three ML models are trained
and tested, with results consolidated via an ensemble model. The
second stage classifies lifecycles using technique sequences derived
from the ensemble. The sequences serve as the training dataset to train
and test an ML model for lifecycle detection. Details of each stage are
provided in Sections Section 4.2, 4.4, and 4.3.

Fig. 6 illustrates the ML+SM approach for lifecycle detection using
sequence matching. The process starts by splitting each data source into
training and testing datasets. After pre-processing, we train three ML
models using these datasets. Techniques are detected using the testing
datasets and merged via an ensemble model. Technique sequences are

Y.-D. Lin et al.
ML on technique ML on lifecycle
processing processing
H v
Lifecycle
g (Classification|

Analysis
Results

Technique
sequences

i Y '
System logs 6' Pre- | [Technique| ' [Ensemble
I rocessing Detection | '{_Model

Host statistics m
Network Traffic

Testing Phase

Fig. 5. ML on technique + ML on lifecycle.

Training Phase

Ensemble
Model

|
: !
1
& | Pre- . v Technique
WII 1 |_processing raming |7 Sequences
/ : 1
] ' ! Pre-
h 1 o
] ; processing
|| : MY i
= ¢ (1] ==
System logs \, ——=x - ! A
Hg,st statist%cs '\ . Pre- Technique | ! Matching
Network Traffic “I | processing Detection |
,

'
Testinglese'------““"““""I Analysis
Results

Fig. 6. ML on technique + sequence matching on lifecycle.

D™ = Training dataset
D¥ = Testing dataset
ML = List of algorithm
|D| = Number of data sources
w=0,n=0,
Best =0, Result_single =[],

[Preprocess datasets| -

Train models |-+

Best =
argmax(Result_single)

M = train ML, usingD?
esult_single = Result_single UF1(MT (DF))

Fig. 7. Trained ML models from each data source.

then classified to their lifecycles using sequence matching. The training,
ensemble, and sequence matching processes are detailed in Sections
Section 4.2, 4.3, and 4.5, respectively.

4.2. Trained ML models from each data source

Fig. 7 shows the procedure for training and testing ML models using
data from three data sources. During the training phase, we utilize
several ML algorithms, leading to the development of an array of ML
models. The models generated from this phase are utilized for both the
single-stage ML approach and the initial stage of the two-stage models.

Before training, the datasets undergo preprocessing, which includes
steps such as one-hot encoding for categorical features, data cleaning,
removal of duplicated features, and feature scaling. In the model train-
ing phase, each algorithm from the list M L is trained using the desig-
nated data source. The model’s performance is assessed on the testing
dataset, D?, and the best results are stored in Result_single. If
a model outperforms others, the Best value is updated. The process
iterates through all data sources and algorithms, ensuring every combi-
nation is evaluated. By the end, the top-performing model is identified
as MT x.

Computers & Security 142 (2024) 103859

DP = Testing dataset
MJ* = Trained ML models
C = combinations of data sources/ .-
1=0,Best=0, ¢
Result_ensemble =

Get ensemble team

Best = 0
argmax(Result_ensemble)) .

MF is compose of
MT* we selected

Result_cnsemble —
Result_ensemble U FL(MF (D))

Fig. 8. Procedure of creating the ensemble team.

4.3. Ensemble method

The rationale behind using the ensemble method is to mitigate
the effects of individual model weaknesses or errors from each data
source (Zhang et al., 2022). Fig. 8 illustrates the procedure of creating
an ensemble team and assessing its performance. Inputs include the best
ML model for each data source from Section 4.2 and a testing dataset
across three data source types.

In this study, the diversity of the models in the ensemble is inher-
ently enhanced by the varied nature of the data sources. Each model,
trained on this heterogeneous data, develops unique strengths and
weaknesses, contributing to a more robust ensemble. By integrating
these diverse models, our ensemble approach gains a comprehensive
perspective, increasing its robustness and accuracy in detecting and
classifying complex cyber threats. This method capitalizes on the di-
verse data characteristics to ensure a more effective and nuanced threat
detection system.

Ensemble teams are formed by combining classifiers trained with
different ML models and data sources. There are four possible ensemble
team combinations: (1) models from traffic, system log, and host statis-
tics, (2) models from traffic and system log, (3) models from system
log and host statistics, and (4) models from traffic and host statistics.
Each model is evaluated using its respective data source. The predicted
outcomes and ground truths are subsequently synchronized according
to their time slots.

A voting mechanism is then employed to produce consolidated
results for each time slot and the F1 score of the ensemble team is
computed for all ensemble teams. The output is the ensemble team
exhibiting the highest F1 score.

Fig. 9 provides an illustrative example of how these results are
merged. For every data point in the dataset, there are three types
of data sources per time slot (e.g., 1s). Each data source is fed into
its corresponding pre-trained model to derive a detection result. We
then calculate the count of both the prediction result labels and the
actual labels for each time slot. We implement soft voting for each
category which aggregates the predicted results for each class across
all the models, and then the class with the highest average score is
taken as the final result. Due to the typically higher prevalence of the
benign class (e.g., label 0), a predetermined threshold for this class is
set. If the benign class surpasses this threshold, the data is classified
as benign for that time slot. If not, it is classified under the class
with the highest representation between the other classes. We perform
exhaustive searching to identify the optimal threshold. The searching
method is not just to achieve the highest F1 score, but also to ensure
that, under this threshold, the detection results do not exclusively
consist of label 0 or entirely lack label 0.

Y.-D. Lin et al

fn one { 10 traffic flow data
second
v

8 host statistics data

(o

5 system logs data

(|

Traffic model Log model Statistics model
¥ ¥ 7
index [Prediction|ground| [je [prediction|ground| |;, jey [Predicti und|

result | truth result | truth result | truth

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0

2 0 0 2 0 0 2 0 0

3 0 0 3 0 2 3 0 0

4 0 0 4 4 1 0

5 0 0 5 1 0

6 0 0 6 1 1

7 0 1 7 1 2

8 0 1

4
0-90% 0-70% 0-100% 0-60% 0-50% 0-75%
1-10% 1-20% 1-0% 1-0% 1-50% 1-12.5%
2-0% 2-10% 2-0% 2-40% 2-0% 2-12.5%

1-20% 1-11%

2-0% 2-21%

Result:0 Ground truth:2

Fig. 9. Illustration of ensemble method.

DE = Trainine dataset
DF = Testine dataset
p ML = List of aleorithms
N = Number of data sources,

MZ. = train ML, usingD¥
esult_single = Result singlchl(M,fn(Dc)) i

Fig. 10. Trained lifecycle detection model.

4.4. Trained lifecycle detection model

Fig. 10 depicts the process of employing ML models to classify
testing data. The generated models are then used in the second stage
of the ML+ML method. Both training and testing datasets are used as
input, associating each technique with a lifecycle label. Prior to use,
these datasets undergo preprocessing. We select technique sequences
based on lifecycle timestamps and label them for training. We also
remove consecutive duplicate techniques to prepare the sequences for
matching and training.

For each model, it is trained with the training dataset and subse-
quently tested with the testing dataset to calculate the F1 score. The
F1 scores obtained from testing with each model are compiled into a
list, and the model with the highest F1 score is selected. The outcome
of this process is the classifier that achieves the highest F1 score for
identifying the lifecycle.

4.5. Sequence matching method

The method used from this phase are utilized for the second stage of
ML+SM method. Fig. 11 describes the process of evaluating a testing
dataset using a similarity metric based on edit distance (Levenshtein
et al., 1966) and predefined lifecycle sequences. The inputs include the
similarity metric, the predefined sequences, and the testing dataset. The
predefined sequences are derived from the order of reproduced attack
scenarios in the CREMEv2 dataset. We provide a detailed explanation

Computers & Security 142 (2024) 103859

D*T = Testing dataset
L= Predifined sequences of each class
Sim = Similarity metric
m=0.q-0,
Result_compare =[], Result_testing = [}

[Seauence
Comparison

Preprocess dataset

[Rrsun,usung = Result_testing U argmax(Result_compare)

m=0,
Result_compare =[]
No
Yes
¥
[Result_compare = Result_compare U Sim(L, Dj "))]

Fig. 11. Sequence matching method.

F1score = F1(D'7, Result._testing)

and the example of these sequences in Section 5.2. After preprocess-
ing the dataset, each sequence is compared to the lifecycle patterns,
assigning the class with the maximum similarity. This is repeated for
all sequences, resulting in an F1 score for the method.

Let S, and S, be two attack technique sequences. Specifically,
ED(S,,S,) is the edit distance of two sequences S1 and S2 proposed
by Levenshtein et al. (1966) and max(len(S)),len(S,)) represents the
longest length between .S, and .S,. The similarity metric between
sequences S| and S, can be described as

ED(Sy,S,)
max(len(S)),len(.S,))’
Sim(S),S,) can be used to compute similarity between predefined

sequences of each lifecycle class and used to detect technique sequence,
and do classification based on the similarity of each class.

Sim(S,,S,) = 1 1

5. Implementation

In this section, we present the implementation of our solution. First,
we summarize the open sources and tools used for the implementation.
Second, we focus on describing the details of the implementation.

5.1. Open sources and tools

We classify open sources and tools into two categories: dataset and
libraries. We describe the details of the categories as follows.

Dataset

In this study, we employed CREMEv2 (Yudha, 2023) as the dataset
to train our ML models. CREMEv2, an upgrade version of CREMEv1
(Bui et al., 2021), distinguishes itself in two ways: a broader array of
attack techniques across lifecycles and multiclass labeling represent-
ing both attack techniques and lifecycles, in contrast to the binary
labels of CREMEv1. This toolchain, based on ATT&CK, automates the
reproduction of attack techniques and lifecycles using Metasploit as the
tool to launch the techniques. It encompasses five attack lifecycles, 17
techniques, and three data types: network traffic, system logs, and host
statistics, as explained in Section 2.

The five attack scenarios in CREMEv2 encapsulate a wide spectrum
of behaviors, from network-level anomalies (Mirai) to system-level
disruptions (disk wipe), thereby providing a robust testing ground for
the ML-IDS. The feature learning and detection mechanisms of the
proposed approach focus on underlying patterns and anomalies that are
not strictly attack-specific, enhancing its potential to generalize across
a multitude of attack types.

In CREMEvV2, network traffic was captured via Tcpdump and con-
verted into numerical data using Argus for ML model input. System logs
were collected using Rsyslog and then parsed with the Drain tool. These
logs were subsequently transformed into log templates suitable for ML

Y.-D. Lin et al

models capable of Natural Language Processing (NLP) through the Text
Tokenization technique. Host statistics, obtained with Atop for Linux
system monitoring, were filtered to remove unusable features, creating
numerical input for models. All the data sources were collected over a
duration of 3 h and 29 min.

CREMEv2, as the updated version of CREMEv1, adds a router
machine and constructs a host-only network, isolating the primary
operating system from the virtual machines to lessen the effects of
external threats. The constructed testbed includes ten virtual entities:
a controller, a data logger, four client machines, and a single machine
that plays the roles of an attacker, a target, and a benign server. The
intention behind this configuration is to foster a controlled setting that
is optimal for simulating various types of cyber attacks, while also
ensuring comprehensive data collection and logging.

In terms of executing attack scenarios, CREMEv2 employs an array
of attack tools that are in line with the principles of the MITRE
ATT&CK framework. This range encompasses tools for simulating bot-
nets, executing disk wipes, initiating ransomware, conducting resource
hijacking, and launching endpoint DoS attacks. For instance, it uses
a pre-compiled version of Mirai for botnet scenarios, Metasploit for
advanced access techniques, and bespoke scripts for ransomware and
resource hijacking. These tools are meticulously selected to correspond
with distinct attack methods according to the framework, facilitating
precise replication of cyber threat behaviors.

The procedure for generating the dataset starts with the automated
enactment of these attack scenarios through the tools described above.
Command and coordination of the attack simulations are managed by
the central controller server, which oversees the interplay between all
participating entities. As the attacks proceed, real-time data is captured
from the clients, the targeted server, and the benign server, which is
then routed to the data logger for unified logging. This centralized
collection system simplifies the data handling process and supports
the creation of detailed datasets that encapsulate the complexity of
each cyber attack scenario. Post data acquisition, an elaborate labeling
process is conducted based on the breakpoint information collected
during the attack stages.

The data distribution for different techniques across each data
source is shown in Table 3. We then used 80% of the data as train-
ing, 10% as validation, and 10% as testing. This table highlights
a noticeable class imbalance, with some classes having significantly
fewer instances. To rectify this and improve our models’ F1 scores,
we applied the SMOTE technique to balance the data classed within
each data source. It generates synthetic samples for the minority class
by interpolating existing minority instances, creating a more balanced
dataset for machine learning model training.

Hardware and software

For our experiments, we utilized specific hardware and software
configurations. The hardware specifications included an AMD Ryzen
7 5800-X 8-core processor and 128 GB of RAM. The operating system
used was Ubuntu 22.04, and no GPU was installed.

In terms of software, we employed Python 3.8 as the primary
programming language. To address dataset imbalance, we utilized the
open-source library Imbalanced-learn 0.10.1, which offers resampling
techniques. For ML tasks, Scikit-learn 1.2.0 (Pedregosa et al., 2011)
served as our main library, providing various algorithms such as de-
cision trees and SVMs. Additionally, we utilized XGBoost 1.7.3, a
gradient-boosting decision tree algorithm, as one of our ML models.

For DL tasks, we leveraged Tensorflow 2.6.5. (Abadi et al., 2015).
To visualize our results effectively, we utilized Seaborn 0.12.2 and Mat-
plotlib 3.6.2. These software tools collectively facilitated the execution
of our experiments and the analysis of our results.

Computers & Security 142 (2024) 103859

Table 3

Summary of data labels for techniques.
Label Data source

Network traffic Accounting Syslog

0 50000 59297 2572
1 50000 3967 1955
2 176 174 408
3 - 32 -
4 404 467 415
5 - 32 -
6 46 207 264
7 - 32 87
8 32 24 302
9 12 96 -
10 32 24 86
11 606 10500 -
12 - 30 98
13 12647 - -
14 - - 122
15 - 20 139
16 - 32 83
17 - 32 181

5.2. Implementation details

In this section, we detail the solution’s implementation as discussed
in Section 4. We first preprocessed our dataset for ML model training.
This involved cleaning data, selecting appropriate features for each data
source, and standardizing the data.

For system logs, we employed label encoding and sequenced event
templates every second. Initially, we extracted useful information from
unstructured log files using the Drain tool. This process yielded a log
template for each Syslog (Lin et al., 2022). Next, each template was
assigned a unique number, in a process we referred to as label encoding.
For instance, if there are three log templates (template A, template
B, and template C), they are labeled 1, 2, and 3, respectively. With
templates converted into numbers, we then collected all log template
numbers in sequence for every second. This sequence of log template
numbers serves as our data for training and testing.

For both host statistics and network traffic data, we first applied
one-hot encoding to non-numerical data. Following this step, we pro-
ceeded to standardize the features. Subsequently, any duplicated or
non-varying features were eliminated. This process resulted in 38 fea-
tures for network traffic and 36 features for host statistics. After pro-
cessing the datasets, we divided them into training and testing sets.
The training set was balanced using the SMOTE (Chawla et al., 2002)
method.

Furthermore, for host statistics and network traffic data, which
primarily consist of numerical features, we employed standard ML
models. Current literature suggests that these models are highly effec-
tive for such datasets, delivering robust performance with relatively
low computational demands (D’hooge et al., 2020). However, for a
comprehensive and fair assessment, we also included Deep Neural
Networks (DNN) as a comparative benchmark.

Moreover, system logs predominantly contain textual information.
Analyzing sequential textual data requires models that can understand
context and the inherent order of the sequence. Thus, we employed
DL models specifically designed for such tasks, including Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated
Recurrent Units (GRU). These models possess the capability to perform
intricate natural language processing techniques, making them well-
suited for analyzing system logs (Sworna et al., 2023; Satilmis et al.,
2024).

After acquiring pre-trained ML models for each data source, the
next step involves ensemble methods. These methods combine ML
models from different data sources using diverse ML algorithms. Given
that each data source records information at varying intervals, we

Y.-D. Lin et al

synchronize detection results and associated ground truths by merging
them at one-second intervals. To consolidate these results, we employ
the soft voting technique.

After voting, we applied a threshold to determine whether the
prediction result for each second belongs to class 0 or not. If the
percentage of class O for each data source within one second exceeds
the threshold, we labeled it as 0; otherwise, we selected the label with
the highest percentage among the remaining labels. The percentage
is determined by the number of occurrences of each prediction result
divided by the total number of predictions in each second.

Fig. 9 provides a detailed illustration of the ensemble process.
For example, if network traffic produces 10 detection results with
corresponding ground truths in one second, they are merged into a
single detection result with its corresponding ground truth. If between
those 10 results, label 0 appears more than 9 times, we assign label 0
as the detection result for that second, applying the same process to the
ground truths.

Finally, we assessed the performance of the ensemble teams using
the F1 score. This F1 score has been primarily utilized as the evaluation
metric due to its balanced consideration of both precision and recall,
crucial in the context of IDS. These IDS environments demand a metric
that equally values the correct identification of attacks (precision) and
the system’s ability to identify as many attacks as possible (recall).
Given the intricate nature of attack lifecycles and techniques, which
often involve overlapping and nuanced behaviors, the F1 score provides
a more comprehensive measure of a model’s accuracy than either preci-
sion or recall alone. Hence, the F1 score is an appropriate and efficient
indicator for assessing our model’s efficacy in detecting complex cyber
threats. We then evaluated seven different combinations of data sources
to determine the best-performing ensemble team.

Furthermore, to generate technique sequences for lifecycle detec-
tion, we fed multiple data sources into the ensemble model, and then
sorted its detection results by seconds. Based on the start and end times-
tamps of each attack lifecycle, we extracted the technique sequences.
These sequences resemble a series of numbers, with each number
representing a predicted technique every second; ‘0’ denotes no attack
technique, while other numbers correspond to specific techniques.

However, the original datasets present a challenge due to their
limited sequence data, covering only five lifecycles. To address this
limitation, we enhanced the training data volume for the DL models
used in lifecycle detection by adjusting the number of ’label 0’ in a
sequence, thereby varying the intervals between attack techniques. For
instance, a lifecycle sequence such as ‘10002220033’ was augmented
to ‘1022200000033’. This approach primarily impacted the number of
label 0 in the sequences, but we took care to retain essential features
within the lifecycles.

After refining the technique sequence dataset, we removed label
0 and any consecutive duplicate techniques before using the data to
train and test the learning models for the second stage of the ML+ML
approach. Treating lifecycle detection as an NLP task, we selected
several DL models for evaluation. These models were trained and tested
using the sequence datasets, and their performance was evaluated using
the F1 score. Finally, we chose the model with the highest F1 score to
handle this task.

For lifecycle detection, we also utilized sequence matching. Initially,
we designated the original technique sequence as the pattern for each
lifecycle class. During testing, technique sequences from the dataset
were chosen and preprocessed to align with the patterns. The pro-
cess of sequence matching is illustrated in Fig. 12. We preprocessed
the technique sequence derived from the first stage ML model by
eliminating occurrences of label 0 and merging consecutive identical
numbers. After preprocessing, we compared the sequence with the
pattern sequences. We employed edit distance, calculated through dy-
namic programming, to measure similarity between the selected and
pattern sequences. The most similar lifecycle class was then chosen as
the detection result.

Computers & Security 142 (2024) 103859

Technique Sequence obtained from 14 stage

Label

Pre-processing ~==

T [1,2,4,8,10,12,17) s

Fig. 12. An Example of Sequence Matching.

Table 4
Hyperparameter settings for ML.
Classifier Hyperparameter Value
Logistic Regression C 1
max depth 8
Decision Tree min sample leaf 1
min sample split 2
SVM C 1.15
max depth 11
Random Forest min sample leaf 1

min sample split

Bagging Ensemble max samples

Gradient Boosting min sample leaf

2
2
max depth 8
1
min sample split 2

objective multi:softprob

eval metric merror

booster gbtree
XGBoost learning rate 0.3

gamma 0.2

max depth 9

min child weight 3

6. Experiment results

This section begins with a description of the hyperparameter con-
figuration for all classifiers that we used. Then, the rest of this sec-
tion shows the experiment results to address the issues introduced in
Section 1.

6.1. Experimental setup

We employed a range of ML and DL models for each data source,
selecting widely used options in the ML-IDS domain. We fine-tuned the
hyperparameters of network traffic and host statistics models through
a grid search, ensuring optimal performance. The key hyperparameters
for these models are detailed in Table 4.

In addition to ML models, we incorporated several DL models.
The DNN model was employed for both host statistics and network
traffic data sources, while the other models were used for system
logs, technique sequences data sources, and lifecycle detection. Table 5
shows the architectures of those neural networks.

6.2. Single- vs. Two-stage ML

This section assesses three lifecycle detection methods (ML, ML+ML,
ML+SM) outlined in Section 4 to identify the most effective one.
In the initial ML stage, we employed XGBoost for network traffic
and host statistics, LSTM for system logs, and Bi-LSTM for ML+ML’s
second stage. Fig. 13 compares F1 scores for attack lifecycle detection
among these approaches. The standalone ML method scored 0.887,
indicating solid performance. However, it is surpassed by the two-
stage ML approach (ML+ML). The single-stage method struggles with
distinguishing techniques across multiple lifecycles, potentially caus-
ing misclassification. In contrast, the ML+ML method excels with a
0.994 F1 score. Here, the second-stage model learns the technique
sequences generated by the first-stage model. Even if the first-stage

Y.-D. Lin et al

Table 5
DL model architectures.
Classifier Layer Type Output shape Activation
function
1 Dense (256) relu
2 Dense (128) relu
DNN 3 Dense 64) relu
4 Dense (32) relu
5 Dense (number of labels) softmax
1 Embedding (1950, 16)
RNN 2 SimpleRNN (1950, 64) tanh
3 SimpleRNN (32) tanh
4 Dense (number of labels) softmax
1 Embedding (1950, 16)
2 LSTM (1950, 64) tanh
LsT™ 3 LSTM (32) tanh
4 Dense (number of labels) softmax
1 Embedding (1950, 16)
. 2 Bi-LSTM (1950, 128) tanh
BILSTM 3 Bi-LSTM (64) tanh
4 Dense (number of labels) softmax
1 Embedding (1950, 16)
2 GRU (1950, 64) tanh
GRU 3 GRU (32) tanh
4 Dense (number of labels) softmax
1 Embedding (1950, 16)
. 2 Bi-GRU (1950, 128) tanh
Bi-GRU 3 Bi-GRU (64) tanh
4 Dense (number of labels) softmax

F1 Score

00
ML+ML

Model

Fig. 13. Performance of three approaches.

models misclassify some techniques, the second-stage model incor-
porates these errors as features within the technique sequences for
lifecycle recognition, enhancing overall performance.

Conversely, the ML+SM approach yields the lowest performance,
achieving only an F1 score of 0.189. There are two primary reasons
for the poor performance of this method. Firstly, the comparison is
based on pattern sequences, heavily relying on the ML models’ ability
to correctly recognize techniques from data sources and merge them
accurately to form the correct sequence. Second, the similarity in se-
quence patterns poses a challenge. As observed in Fig. 1, the initial four
attack techniques for ransomware, resource hijacking, and disk wipe
are identical, making it challenging to precisely match the identified
technique sequence to the correct lifecycle.

Moreover, Fig. 14 presents the confusion matrices for these three
approaches. The confusion matrix for the single-stage ML approach
reveals that only benign data can be correctly classified, with a true
positive rate of 0.98. In contrast, the true positive rates for the other
lifecycle classes only reach 0.78. This confirms our earlier explanation
that the presence of techniques shared across different attack lifecycles
poses challenges for accurate detection. While the single-stage ML
approach achieves a high overall F1 score, it is evident that this method
struggles to precisely classify lifecycles.

Because a technique can be used in several lifecycles, it posed
challenges for single-stage ML and ML+SM. In single-stage ML, without

10

Computers & Security 142 (2024) 103859

the context of technique sequences, the method struggled to accurately
classify lifecycles. Similarly, ML+SM faced difficulties due to the simi-
larity between technique sequences from different lifecycles, leading to
misclassification.

However, the two-stage ML+ML approach effectively addressed this
issue by using ML in the second stage. This allowed the model to
learn and differentiate the unique sequences of techniques associated
with each specific lifecycle. By understanding the intricate patterns
of technique sequences within each lifecycle, the two-stage ML+ML
approach achieved more accurate and reliable classification results.

Table 6 shows the detection times for various methods applied to
a dataset consisting of 6000 data points. These methods were assessed
sequentially to evaluate their efficiency in a controlled environment.
The detection time, measured in seconds, spans several categories:
Host Statistics, System Log, Network Traffic, Ensemble on Lifecycles,
Ensemble on Techniques, ML on Lifecycles, and Sequence Matching,
leading to the total time. The single-stage ML method recorded de-
tection times of 23.9, 36.2, and 30.8 s for Host Statistics, System
Log, and Network Traffic, respectively, with a total aggregated time of
93.95 s. The ML+ML approach, which integrates ML for both technique
and lifecycle detection, showed slightly higher times due to the added
complexity, totaling 98.4 s. The ML+SM method, combining machine
learning with sequence matching, marked the longest detection time
at 101.76 s, reflective of the additional time required for sequence
matching. Each time value presented is the mean from multiple tests,
denoted alongside their standard deviations, ensuring the reliability
and reproducibility of the results. This detailed detection time analysis
helps in understanding the efficiency and resource utilization of each
proposed detection method.

Furthermore, a direct comparison of results with previous works
is not feasible due to distinct methodologies and objectives. Earlier
studies either focused on binary detection at the technique level or
on identifying attacks without considering their lifecycle stages. In
contrast, our approach is unique with its two-stage attack detection
process. We initially detect individual techniques and then analyze
their sequences to classify attack lifecycles. This multi-class, sequential
analysis differs fundamentally from past works that employ binary
classification or a single-stage approach.

6.3. Learning models on lifecycle detection

This experiment seeks to identify the best model for lifecycle de-
tection within our ML+ML approach. We utilized the dataset from the
first stage of both ML+ML and ML+SM approaches for this purpose.
To overcome limited lifecycle data points, we augmented the dataset
by adjusting the number of label 0 in each sequence. This expansion
yielded 357 data points for each lifecycle.

Fig. 15 shows the performance of various DL models in classify-
ing the lifecycle. Notably, bidirectional models such as Bi-LSTM and
Bi-GRU outperform their unidirectional counterparts. This suggests
their capacity to capture more intricate patterns in the data, with the
highest-performing model achieving an F1 score of 0.994.

Overall, these results underscore the effectiveness of employing
deep learning models, specifically those based on LSTM and GRU,
for classifying attack lifecycles from technique sequences. Particularly,
when we enabled these models to learn contextual relations bidirec-
tionally, the performance is further enhanced.

6.4. Single- vs. Multi-datasource

In this section, we assess the potential benefits of integrating multi-
ple data sources for detection tasks. Specifically, we aim to determine if
these sources, when combined, can enhance performance and whether
they complement each other.

After obtaining the detection results from each data source, we
employed ensemble techniques to integrate these results across multiple

Y.-D. Lin et al

ML

[CRORCER 0.00 0.00 0.00

0.8
0.01 0.06 0.06 O. !
0.05. .00 0. . -

0.01 0.00 0.51

Actual

0.01 0.00 04

K] 0. 0.07 0.04 0.04.0.09
02

0.05 0.09 0.01 0.03 Neowi]

0.0

1 5 1 3

2 3
Predicted

ML+ML

3
Predicted

Computers & Security 142 (2024) 103859

ML+SM

08

Actual

0.0 0.0

4 - | 1 4 5

-]
Predicted

0: Benign 1: Mirai 2: Ransomware 3: Resource Hijacking 4: Disk Wipe 5: End Point DoS
Fig. 14. Confusion matrices of three approaches.
Table 6
Testing time (in seconds) for various methods.
Method Testing Time (in seconds)
Host System Log Network Ensemble on Ensemble on ML on Sequence Total
statistics traffic lifecycles techniques lifecycles matching time
ML 23.9 + 0.35 36.2 + 0.25 30.8 + 0.44 3.05 + 0.005 - - - 93.95
ML+ML 24.3 + 0.29 35.7 + 0.6 32 + 0.26 - 3.06 + 0.003 3.34 + 0.018 - 98.4
ML+SM 25.7 + 0.32 34.5 + 0.44 36 + 0.53 - 3.26 + 0.01 - 2.3 +0.013 101.76
10 0.983 o 0.994 Table 7
e Aggregated data label threshold.
Data sources Threshold
0.8 0.778
T 0.98
L 1
© 067
s A 0.87
z T+L 0.81
041 T+A 0.863
L+A 0.84
& T+L+A 0.805
T/L/A: Traffic/System Log/Accounting
%0 RNN Ls™ Bi-LSTM GRU Bi-GRU

Fig. 15. Model evaluation for lifecycle.

ML models and data sources. These data points were aggregated into
one-second time slots to facilitate the ensemble process. We conducted
an exhaustive search to determine the optimal threshold for classifying
aggregated data as benign or indicative of attack techniques. If the
number of data points within one second exceeded this threshold,
the data point was classified as benign. Otherwise, it was classified
according to the highest representation among the other technique
classes. To ensure a fair comparison between multi-datasource and
single-datasource approaches, we merged data points from individual
sources in a similar manner. The optimal thresholds, presented in
Table 7, were selected not only to achieve the highest F1 score but
also to ensure that detection results maintain a balance between label 0
and other labels. For instance, if there are 100 data points for network
traffic within a second, they would be consolidated and classified as
label 0 if 98 of those data points are detected as label 0.

The results from Fig. 16 confirm that combining various data
sources enhances the performance. Among the data sources, network
traffic is predominant with an F1 score of 0.877.

The ensemble utilizing all three data types outperforms the seven
combinations, achieving an F1 score of 0.922. Furthermore, every
ensemble team that includes more than one data sources outperforms
each individual data source within that team. This strongly supports
the notion that leveraging multiple data sources significantly improves
the detection performance.

11

F1 Score

3 T+S L+S

THL
Combinations

T: network traffic L: system log S: host statistics

Fig. 16. Evaluation for single- vs. multi-datasource.

6.5. Learning models on technique detection

In this section, we analyze the performance of both ML and DL mod-
els in detecting techniques across different data sources. As previously
explained in Section 5.2, when conducting technique detection tests for
each data source, we merged the data points into one-second intervals.
This approach was taken to simplify the comparison between various
combinations of single and multiple data sources.

We also examine the training times of these models on each data
source, which is critical for understanding the computational efficiency
of the models in addition to their detection performance. The training
times, measured in minutes, are summarized in Table 8.

Y.-D. Lin et al

- Network Traffic 0877

W Host Statistics

GD e

XGBoost

Random DNN

Forest

Bagging

Decision
Tee Ensemble

Logistic Gradient
Regression Boosting

Fig. 17. Model evaluation for network traffic and host statistics in technique detection.

Technique detection from network traffic

Fig. 17 illustrates the performance of ML models in classifying
network traffic. It is evident that the majority of models excel, signi-
fying their adeptness in capturing the correlation between labels and
features.

Although most models exhibit strong performance, we observed
a slight superiority between tree-based models. This indicates their
suitability for network traffic analysis. XGBoost emerged as the top-
performing model among these, achieving an impressive F1 score of
0.877.

The training times for traffic data, as detailed in Table 8, reveal that
while SVM and Gradient Boosting models require the longest training
periods due to their complex computations, XGBoost stands out for its
high F1 score combined with reasonable training time. This balance
makes XGBoost particularly appealing for applications requiring both
high accuracy and computational efficiency.

Technique detection from host statistics

Fig. 17 shows the ML model performance for host statistics. Notably,
certain models such as stochastic gradient descent (SGD) and logistic
regression exhibit a decline of at least 0.2 in their F1 scores compared
to the remaining models, possibly due to their simpler structures failing
to capture the intricate relationships between the features. Conversely,
tree-based classifiers, specifically bagging ensemble, gradient boosting,
and XGBoost, perform exceptionally well, achieving an F1 score of
0.724. Remarkably, even a standalone decision tree reaches an F1 score
of 0.701, underscoring the efficacy of tree-based models. Their ability
to decode complex non-linear relationships through the if-else rules,
combined with computational efficiency, makes them an ideal choice
in this scenario.

The training times for host statistics data in Table 8 highlight
the efficiency of tree-based models, such as Decision Tree, Bagging
Ensemble, and XGBoost, not only in their superior F1 scores but also
in their relatively short training times, making them highly suitable for
rapid model development cycles.

Technique detection from system logs

Fig. 18 shows the performance of various DL models when ap-
plied to system logs. Despite being used for NLP tasks, these models
underperformed, with the highest F1 score being only 0.578 from
LSTM.

The significant factor influencing this outcome is the dataset la-
beling process. After extracting data from system logs, we labeled it
using the attacker’s hostname in conjunction with the attack’s start
and end times. For instance, if a data point contains the attacker’s
hostname and falls within the attack process timeframe, we label it an
attack. However, some benign log data might also include the attacker’s
hostname. This inclusion introduces outliers into our labeling, affect-
ing label quality. To enhance the performance, exploring alternative
methods of labeling the data is crucial moving forward.

12

Computers & Security 142 (2024) 103859

1.0

08

F1 Score
o
o

o
s

02

0.0

RNN LSTM

Bi-LSTM

GRU Bi-GRU

Fig. 18. Model evaluation for system logs in technique detection.

Table 8
Training times of models across each data source, measured in
minutes.
Model Data source
Traffic Host System
statistics Logs
Logistic Regression 2.22 4.76
SGD 0.06 0.07
Decision Tree 0.03 0.02
SVM 34.07 96.98
Random Forest 0.11 0.15 -
Bagging Ensemble 0.02 0.14
Gradient Boosting 39.37 38.70
XGBoost 6.82 9.85
DNN 12.50 21.18
RNN 105.48
LSTM 158.67
Bi-LSTM - - 131.75
GRU 195.75
Bi-GRU 146.33

The training times for system logs, detailed in Table 8, reveal
that DL models, particularly RNN and its variants, necessitate longer
training periods. This underscores the importance of considering com-
putational efficiency alongside model accuracy, especially in real-world
applications where rapid processing of logs is paramount.

7. Conclusions and future work

In this study, we assessed three lifecycle detection approaches us-
ing a combination of three data sources. Results varied considerably
among the methods. The single-stage ML model achieved a respectable
F1 score of 0.887 but lacked insight into technique sequences. In
contrast, the ML+ML approach, featuring a two-stage learning pro-
cess, excelled with an impressive F1 score of 0.994. However, the
ML+SM method, reliant on sequence matching, underperformed due
to sequence discrepancies, yielding an F1 score of only 0.189.

Furthermore, an ensemble approach that combined all the data
sources yielded an F1 score of 0.922 on technique detection, em-
phasizing the value of leveraging multiple data sources for intrusion
detection.

Our findings also highlight the robust detection capabilities of ML
and DL models for detecting attack techniques. Notably, tree-based
models, especially XGBoost, excelled in network traffic and host statis-
tics, achieving F1 scores of 0.877 and 0.724, respectively.

In real-world scenarios, these findings enable comprehensive in-
trusion detection, offering a holistic threat perspective. Employing
multiple data sources ensures thorough network monitoring, reducing
the risk of undetected breaches, especially in complex attack scenarios.

However, this proposed approach comes with limitations. Coor-
dinating multiple data sources requires careful synchronization and

Y.-D. Lin et al.

integration. Challenges may arise concerning data privacy, storage, and
real-time processing. The ensemble approach, while comprehensive,
demands more computational resources, impacting scalability in larger
networks. Organizations must balance these benefits and limitations to
optimize method application in their specific contexts.

In future work, there are two directions that can be explored. Firstly,
expanding our detection capabilities to include unknown or emerging
attack vectors, moving beyond the known lifecycles we currently focus
on. This involves exploring new methodologies to identify novel attack
patterns. Secondly, investigating the resilience of our models against
adversarial attacks is crucial. Enhancing model robustness against such
manipulations will ensure the reliability of intrusion detection systems
in the face of evolving cyber threats.

CRediT authorship contribution statement

Ying-Dar Lin: Conceptualization, Funding acquisition, Methodol-
ogy, Project administration, Supervision. Shin-Yi Yang: Writing — orig-
inal draft, Visualization, Validation, Software, Formal analysis, Data
curation. Didik Sudyana: Validation, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Visualization, Writing — review
& editing. Fietyata Yudha: Validation, Methodology, Formal analysis,
Data curation. Yuan-Cheng Lai: Supervision, Formal analysis, Concep-
tualization, Validation. Ren-Hung Hwang: Conceptualization, Formal
analysis, Methodology, Supervision, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015.
TensorFlow: Large-scale machine learning on heterogeneous systems. [Online].
Available: https://www.tensorflow.org/, Software available from tensorflow.org.

Affinito, A., Zinno, S., Stanco, G., Botta, A., Ventre, G., 2023. The evolution of Mirai
botnet scans over a six-year period. J. Inform. Secur. Appl. 79, 103629.

Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D., 2019. A survey on advanced
persistent threats: Techniques, solutions, challenges, and research opportunities.
IEEE Commun. Surv. Tutor. 21 (2), 1851-1877.

Bagui, S., Mink, D., Bagui, S., Ghosh, T., McElroy, T., Paredes, E., Khasnavis, N.,
Plenkers, R., 2022. Detecting reconnaissance and discovery tactics from the MITRE
ATT&CK framework in Zeek Conn logs using Spark’s machine learning in the big
data framework. Sensors 22 (20), 7999.

Beaman, C., Barkworth, A., Akande, T.D., Hakak, S., Khan, M.K., 2021. Ransomware:
Recent advances, analysis, challenges and future research directions. Comput.
Secur. 111, 102490.

Bui, H.-K., Lin, Y.-D., Hwang, R.-H., Lin, P.-C., Nguyen, V.-L., Lai, Y.-C., 2021. CREME:
A toolchain of automatic dataset collection for machine learning in intrusion
detection. J. Netw. Comput. Appl. 193, 103212.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: Synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357.

D’hooge, L., Wauters, T., Volckaert, B., De Turck, F., 2020. Inter-dataset generalization
strength of supervised machine learning methods for intrusion detection. J. Inform.
Secur. Appl. 54.

Du, M., Li, F., Zheng, G., Srikumar, V., 2017. DeepLog: Anomaly detection and
diagnosis from system logs through deep learning. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. CCS ’17,
Association for Computing Machinery, New York, NY, USA, pp. 1285-1298. http:
//dx.doi.org/10.1145/3133956.3134015.

13

Computers & Security 142 (2024) 103859

Gomes, G., Dias, L., Correia, M., 2020. CryingJackpot: Network flows and performance
counters against cryptojacking. In: 2020 IEEE 19th International Symposium on
Network Computing and Applications. NCA, pp. 1-10. http://dx.doi.org/10.1109/
NCA51143.2020.9306698.

Ham, H.-S., Kim, H.-H., Kim, M.-S., Choi, M.-J., 2014. Linear SVM-based android
malware detection for reliable IoT services. J. Appl. Math. 2014.

Hamid, Y., Sugumaran, M., Balasaraswathi, V., 2016. Ids using machine learning-current
state of art and future directions. Brit. J. Appl. Sci. Technol. 15 (3).

Hoque, N., Bhuyan, M.H., Baishya, R.C., Bhattacharyya, D.K., Kalita, J.K., 2014.
Network attacks: Taxonomy, tools and systems. J. Netw. Comput. Appl. 40,
307-324.

Hwang, R.-H., Lee, C.-L., Lin, Y.-D., Lin, P.-C., Wu, H.-K,, Lai, Y.-C., Chen, C., 2023.
Host-based intrusion detection with multi-datasource and deep learning. J. Inform.
Secur. Appl. 78, 103625. http://dx.doi.org/10.1016/].jisa.2023.103625.

Kaloudi, N., Li, J., 2020. The Al-based cyber threat landscape: A survey. ACM Comput.
Surv. 53 (1), http://dx.doi.org/10.1145/3372823.

Levenshtein, V.L, et al., 1966. Binary codes capable of correcting deletions, insertions,
and reversals. Sov. Phys. Doklady 10 (8), 707-710.

Lin, Y.-D., Wang, Z.-Y., Lin, P.-C., Nguyen, V.-L., Hwang, R.-H., Lai, Y.-C., 2022. Multi-
datasource machine learning in intrusion detection: Packet flows, system logs and
host statistics. J. Inform. Secur. Appl. 68, 103248.

Liu, J., Simsek, M., Kantarci, B., Bagheri, M., Djukic, P., 2022. Collaborative feature
maps of networks and hosts for Al-driven intrusion detection. In: GLOBECOM
2022-2022 IEEE Global Communications Conference. IEEE, pp. 2662-2667.

Meng, W., Liu, Y., Zhang, S., Pei, D., Dong, H., Song, L., Luo, X., 2018. Device-
agnostic log anomaly classification with partial labels. In: 2018 IEEE/ACM 26th
International Symposium on Quality of Service. IWQoS, IEEE, pp. 1-6.

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S.,
Sun, P., et al., 2019. LogAnomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs. In: IJCAI, vol. 19, (no. 7), pp.
4739-4745.

Operationally Transparent Cyber Dataset, 2019. DARPA. [Online]. Available: https:
//github.com/FiveDirections/OpTC-data.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825-2830.

Satilmis, H., Akleylek, S., Tok, Z.Y., 2024. A systematic literature review on host-based
intrusion detection systems. IEEE Access 12, 27237-27266.

Sharafaldin, 1., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: International Conference
on Information Systems Security and Privacy. [Online]. Available: https://api.
semanticscholar.org/CorpusID:4707749.

Singh, S., Sharma, P.K., Moon, S.Y., Moon, D., Park, J.H., 2019. A comprehensive study
on APT attacks and countermeasures for future networks and communications:
Challenges and solutions. J. Supercomput. 75, 4543-4574.

Strom, B.E., Applebaum, A., Miller, D.P., Nickels, K.C., Pennington, A.G., Thomas, C.B.,
2018. Mitre ATT&CK: Design and Philosophy. Technical Report, The MITRE
Corporation.

Sun, P., Yuepeng, E., Li, T., Wu, Y., Ge, J., You, J., Wu, B., 2020. Context-aware learning
for anomaly detection with imbalanced log data. In: 2020 IEEE 22nd International
Conference on High Performance Computing and Communications; IEEE 18th
International Conference on Smart City; IEEE 6th International Conference on Data
Science and Systems. HPCC/SmartCity/DSS, IEEE, pp. 449-456.

Sworna, Z.T., Mousavi, Z., Babar, M.A., 2023. NLP methods in host-based intrusion
detection systems: A systematic review and future directions. J. Netw. Comput.
Appl. 220, 103761. http://dx.doi.org/10.1016/j.jnca.2023.103761.

Toupas, P., Chamou, D., Giannoutakis, K.M., Drosou, A., Tzovaras, D., 2019. An
intrusion detection system for multi-class classification based on deep neural
networks. In: 2019 18th IEEE International Conference on Machine Learning and
Applications. ICMLA, IEEE, pp. 1253-1258.

Wang, W., Yi, P., Jiang, J., Zhang, P., Chen, X., 2024. Transformer-based framework
for alert aggregation and attack prediction in a multi-stage attack. Comput. Secur.
136, 103533.

Yang, Z., Liu, X., Li, T., Wu, D., Wang, J., Zhao, Y., Han, H., 2022. A systematic
literature review of methods and datasets for anomaly-based network intrusion
detection. Comput. Secur. 116, 102675.

Yudha, F., 2023. CREMEv2: A toolchain of automatic dataset collection for machine
learning in intrusion detection based on MITRE ATT&CK. [Online]. Available:
https://github.com/masjohncook/CREMEv2.

Yue, H., Li, T., Wu, D., Zhang, R., Yang, Z., 2024. Detecting APT attacks using an
attack intent-driven and sequence-based learning approach. Comput. Secur. 140,
103748.

Zavrak, S., iskefiyeli, M., 2020. Anomaly-based intrusion detection from network flow
features using variational autoencoder. IEEE Access 8, 108346-108358.

Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., Yang, A., 2022. Comparative research
on network intrusion detection methods based on machine learning. Comput. Secur.
121, 102861.

https://www.tensorflow.org/
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb5
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb5
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb5
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb5
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb5
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb6
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb6
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb6
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb6
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb6
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb8
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb8
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb8
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb8
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb8
http://dx.doi.org/10.1145/3133956.3134015
http://dx.doi.org/10.1145/3133956.3134015
http://dx.doi.org/10.1145/3133956.3134015
http://dx.doi.org/10.1109/NCA51143.2020.9306698
http://dx.doi.org/10.1109/NCA51143.2020.9306698
http://dx.doi.org/10.1109/NCA51143.2020.9306698
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb13
http://dx.doi.org/10.1016/j.jisa.2023.103625
http://dx.doi.org/10.1145/3372823
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb20
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb23
https://api.semanticscholar.org/CorpusID:4707749
https://api.semanticscholar.org/CorpusID:4707749
https://api.semanticscholar.org/CorpusID:4707749
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb27
http://dx.doi.org/10.1016/j.jnca.2023.103761
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb31
https://github.com/masjohncook/CREMEv2
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00160-3/sb35

Y.-D. Lin et al

Ying-Dar Lin is a Chair Professor of computer science
at National Yang Ming Chiao Tung University (NYCU),
Taiwan. He received his Ph.D. in computer science from the
University of California at Los Angeles (UCLA) in 1993. He
was a visiting scholar at Cisco Systems in San Jose during
2007-2008, CEO at Telecom Technology Center, Taiwan,
during 2010-2011, and Vice President of National Applied
Research Labs (NARLabs), Taiwan, during 2017-2018. He
cofounded L7 Networks Inc. in 2002 and O’Prueba Inc.
in 2018. His research interests include cybersecurity, wire-
less communications, network softwarization, and machine
learning forcommunications. He is an IEEE Fellow (class of
2013). He has served or is serving on the editorial boards
of several IEEE journals and magazines, including Editor-
in-Chief of IEEE Communications Surveys and Tutorials
(COMST, 2017-2020).

Shin-Yi Yang received his M.S. degree at Institute of
Network Engineering of National Yang Ming Chiao Tung
University (NYCU) in 2023. He was an associate re-
searcher at High Speed Network Lab, NYCU, in 2021-2023.
His research interests include cybersecurity and machine
learning.

Didik Sudyana is a PhD candidate at Electrical Engineering
and Computer Science (EECS) International Graduate Pro-
gram of National Yang Ming Chiao Tung University (NYCU),
Taiwan. He received his M.S. degree in Informatics from
Universitas Islam Indonesia (UII), Indonesia, in 2016. He is
a lecturer in Informatics at Universitas Sains & Teknologi
Indonesia (USTI), Indonesia. His research interests include
cybersecurity, machine learning, and network design and
optimization.

14

Computers & Security 142 (2024) 103859

Fietyata Yudha received an M.S. degree with a digital
forensics specialization from Universitas Islam Indonesia
(UID) in 2013. He is a lecturer and researcher at Universitas
Islam Indonesia and a member of the Center for Digital
Forensic Studies. He is currently pursuing a Ph.D. degree in
Electrical Engineering and Computer Science(EECS) Interna-
tional Graduate Program at National Yang Ming Chiao Tung
University (NYCU), Taiwan. His research interests include
cybersecurity, machine learning, and digital forensics.

Yuan-Cheng Lai received his Ph.D. degree in the Depart-
ment of Computer and Information Science from National
Chiao Tung University in 1997. He joined the faculty of
the Department of Information Management at National
Taiwan University of Science and Technology in August
2001 and has been a distinguished professor since June
2012. His research interests include performance analysis,
software-defined networking, wireless networks, and IoT
security.

Ren-Hung Hwang is the Dean of the College of Artificial
Intelligence, National Yang Ming Chiao Tung University
(NYCU), Taiwan. He received his Ph.D. degree in computer
science from the University of Massachusetts, Amherst.
Before joining NYCU, he was with National Chung Cheng
University, Taiwan, from 1993 to 2022. He has published
more than 250 international journal and conference papers.
He served as the Dean of the College of Engineering during
2014-2017. He received the IEEE Best Paper Award from
IEEE UbiMedia 2018, IEEE SC2 2017, and IEEE IUCC 2014.
His current research interest is in Deep Learning, Wireless
Communications, Network Security, and Cloud/Edge/Fog
Computing.

	Two-stage multi-datasource machine learning for attack technique and lifecycle detection
	Introduction
	Background and Related Works
	MITRE ATT&CK: Tactics, Techniques and Lifecycles
	Attack Scenarios
	Related Works

	Problem Statements
	Notations
	Problem Statements
	Technique Detection from Multi-datasource
	Lifecycle Detection from Technique Sequences

	Solution Approaches
	Solution Overview
	Trained ML Models from Each Data Source
	Ensemble Method
	Trained Lifecycle Detection Model
	Sequence Matching Method

	Implementation
	Open Sources and Tools
	Dataset
	Hardware and Software

	Implementation Details

	Experiment Results
	Experimental Setup
	Single- vs. Two-stage ML
	Learning Models on lifecycle detection
	Single- vs. Multi-datasource
	Learning Models on Technique Detection
	Technique Detection from Network Traffic
	Technique Detection from Host Statistics
	Technique Detection from System Logs

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

